/* * Copyright (c) 2004, Nate Nielsen * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above * copyright notice, this list of conditions and the * following disclaimer. * * Redistributions in binary form must reproduce the * above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or * other materials provided with the distribution. * * The names of contributors to this software may not be * used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ /* * Originally from apache 2.0 * Modifications for general use by */ /* Copyright 2000-2004 The Apache Software Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "hash.h" #ifdef HSH_TIMESTAMP #include #endif #ifdef HSH_COPYKEYS #define KEY_DATA(he) (void*)(((unsigned char*)(he)) + sizeof(*(he))) #else #define KEY_DATA(he) ((he)->key) #endif /* * The internal form of a hash table. * * The table is an array indexed by the hash of the key; collisions * are resolved by hanging a linked list of hash entries off each * element of the array. Although this is a really simple design it * isn't too bad given that pools have a low allocation overhead. */ typedef struct hsh_entry_t hsh_entry_t; struct hsh_entry_t { hsh_entry_t* next; unsigned int hash; #ifndef HSH_COPYKEYS const void* key; size_t klen; #endif const void* val; #ifdef HSH_TIMESTAMP time_t stamp; #endif }; /* * Data structure for iterating through a hash table. * * We keep a pointer to the next hash entry here to allow the current * hash entry to be freed or otherwise mangled between calls to * hsh_next(). */ struct hsh_index_t { hsh_t* ht; hsh_entry_t* ths; hsh_entry_t* next; unsigned int index; }; /* * The size of the array is always a power of two. We use the maximum * index rather than the size so that we can use bitwise-AND for * modular arithmetic. * The count of hash entries may be greater depending on the chosen * collision rate. */ struct hsh_t { hsh_entry_t** array; hsh_index_t iterator; /* For hsh_first(...) */ unsigned int count; unsigned int max; #ifdef HSH_COPYKEYS unsigned int klen; #endif #ifdef HSH_CALLBACKS hsh_table_calls_t calls; #endif }; #define INITIAL_MAX 15 /* tunable == 2^n - 1 */ #ifdef HSH_CALLBACKS /* A copy of the memory call table we've been set to */ static hsh_memory_calls_t g_memory_calls_cpy; /* Pointer to above. This indicates when we actually are set */ static hsh_memory_calls_t* g_memory_calls = NULL; static void* int_malloc(size_t len) { if(g_memory_calls) return (g_memory_calls->f_alloc)(g_memory_calls->arg, len); else return malloc(len); } static void* int_calloc(size_t len) { void* p = int_malloc(len); memset(p, 0, len); return p; } static void int_free(void* ptr) { if(g_memory_calls) { /* We allow for gc type memory allocation with a null free */ if(g_memory_calls->f_free) (g_memory_calls->f_free)(g_memory_calls->arg, ptr); } else free(ptr); } void hsh_set_memory_calls(hsh_memory_calls_t* hmc) { if(hmc == NULL) { g_memory_calls = NULL; } else { memcpy(&g_memory_calls_cpy, hmc, sizeof(g_memory_calls_cpy)); g_memory_calls = &g_memory_calls_cpy; } } void hsh_set_table_calls(hsh_t* ht, hsh_table_calls_t* htc) { memcpy(&(ht->calls), htc, sizeof(ht->calls)); } #else #define int_malloc malloc #define int_free free #endif /* * Hash creation functions. */ static hsh_entry_t** alloc_array(hsh_t* ht, unsigned int max) { return int_calloc(sizeof(*(ht->array)) * (max + 1)); } #ifdef HSH_COPYKEYS hsh_t* hsh_create(size_t klen) #else hsh_t* hsh_create() #endif { hsh_t* ht = int_malloc(sizeof(hsh_t)); if(ht) { ht->count = 0; ht->max = INITIAL_MAX; ht->array = alloc_array(ht, ht->max); #ifdef HSH_COPYKEYS ht->klen = klen; #endif if(!ht->array) { int_free(ht); return NULL; } } return ht; } void hsh_free(hsh_t* ht) { hsh_index_t* hi; for(hi = hsh_first(ht); hi; hi = hsh_next(hi)) { #ifdef HSH_CALLBACKS if(hi->ths->val && ht->calls.f_freeval) (ht->calls.f_freeval)(ht->calls.arg, (void*)hi->ths->val); #endif int_free(hi->ths); } if(ht->array) int_free(ht->array); int_free(ht); } /* * Hash iteration functions. */ hsh_index_t* hsh_next(hsh_index_t* hi) { hi->ths = hi->next; while(!hi->ths) { if(hi->index > hi->ht->max) return NULL; hi->ths = hi->ht->array[hi->index++]; } hi->next = hi->ths->next; return hi; } hsh_index_t* hsh_first(hsh_t* ht) { hsh_index_t* hi = &ht->iterator; hi->ht = ht; hi->index = 0; hi->ths = NULL; hi->next = NULL; return hsh_next(hi); } #ifdef HSH_COPYKEYS void* hsh_this(hsh_index_t* hi, const void** key) #else void* hsh_this(hsh_index_t* hi, const void** key, size_t* klen) #endif { if(key) *key = KEY_DATA(hi->ths); #ifndef HSH_COPYKEYS if(klen) *klen = hi->ths->klen; #endif return (void*)hi->ths->val; } /* * Expanding a hash table */ static int expand_array(hsh_t* ht) { hsh_index_t* hi; hsh_entry_t** new_array; unsigned int new_max; new_max = ht->max * 2 + 1; new_array = alloc_array(ht, new_max); if(!new_array) return 0; for(hi = hsh_first(ht); hi; hi = hsh_next(hi)) { unsigned int i = hi->ths->hash & new_max; hi->ths->next = new_array[i]; new_array[i] = hi->ths; } if(ht->array) free(ht->array); ht->array = new_array; ht->max = new_max; return 1; } /* * This is where we keep the details of the hash function and control * the maximum collision rate. * * If val is non-NULL it creates and initializes a new hash entry if * there isn't already one there; it returns an updatable pointer so * that hash entries can be removed. */ #ifdef HSH_COPYKEYS static hsh_entry_t** find_entry(hsh_t* ht, const void* key, const void* val) #else static hsh_entry_t** find_entry(hsh_t* ht, const void* key, size_t klen, const void* val) #endif { hsh_entry_t** hep; hsh_entry_t* he; const unsigned char* p; unsigned int hash; size_t i; #ifdef HSH_COPYKEYS size_t klen = ht->klen; #endif /* * This is the popular `times 33' hash algorithm which is used by * perl and also appears in Berkeley DB. This is one of the best * known hash functions for strings because it is both computed * very fast and distributes very well. * * The originator may be Dan Bernstein but the code in Berkeley DB * cites Chris Torek as the source. The best citation I have found * is "Chris Torek, Hash function for text in C, Usenet message * <27038@mimsy.umd.edu> in comp.lang.c , October, 1990." in Rich * Salz's USENIX 1992 paper about INN which can be found at * . * * The magic of number 33, i.e. why it works better than many other * constants, prime or not, has never been adequately explained by * anyone. So I try an explanation: if one experimentally tests all * multipliers between 1 and 256 (as I did while writing a low-level * data structure library some time ago) one detects that even * numbers are not useable at all. The remaining 128 odd numbers * (except for the number 1) work more or less all equally well. * They all distribute in an acceptable way and this way fill a hash * table with an average percent of approx. 86%. * * If one compares the chi^2 values of the variants (see * Bob Jenkins ``Hashing Frequently Asked Questions'' at * http://burtleburtle.net/bob/hash/hashfaq.html for a description * of chi^2), the number 33 not even has the best value. But the * number 33 and a few other equally good numbers like 17, 31, 63, * 127 and 129 have nevertheless a great advantage to the remaining * numbers in the large set of possible multipliers: their multiply * operation can be replaced by a faster operation based on just one * shift plus either a single addition or subtraction operation. And * because a hash function has to both distribute good _and_ has to * be very fast to compute, those few numbers should be preferred. * * -- Ralf S. Engelschall */ hash = 0; #ifndef HSH_COPYKEYS if(klen == HSH_KEY_STRING) { for(p = key; *p; p++) hash = hash * 33 + *p; klen = p - (const unsigned char *)key; } else #endif { for(p = key, i = klen; i; i--, p++) hash = hash * 33 + *p; } /* scan linked list */ for(hep = &ht->array[hash & ht->max], he = *hep; he; hep = &he->next, he = *hep) { if(he->hash == hash && #ifndef HSH_COPYKEYS he->klen == klen && #endif memcmp(KEY_DATA(he), key, klen) == 0) break; } if(he || !val) return hep; /* add a new entry for non-NULL val */ #ifdef HSH_COPYKEYS he = int_malloc(sizeof(*he) + klen); #else he = int_malloc(sizeof(*he)); #endif if(he) { #ifdef HSH_COPYKEYS /* Key data points past end of entry */ memcpy(KEY_DATA(he), key, klen); #else /* Key points to external data */ he->key = key; he->klen = klen; #endif he->next = NULL; he->hash = hash; he->val = val; #ifdef HSH_TIMESTAMP he->stamp = 0; #endif *hep = he; ht->count++; } return hep; } #ifdef HSH_COPYKEYS void* hsh_get(hsh_t* ht, const void *key) { hsh_entry_t** he = find_entry(ht, key, NULL); #else void* hsh_get(hsh_t* ht, const void *key, size_t klen) { hsh_entry_t** he = find_entry(ht, key, klen, NULL); #endif if(he && *he) return (void*)((*he)->val); else return NULL; } #ifdef HSH_COPYKEYS int hsh_set(hsh_t* ht, const void* key, void* val) { hsh_entry_t** hep = find_entry(ht, key, val); #else int hsh_set(hsh_t* ht, const void* key, size_t klen, void* val) { hsh_entry_t** hep = find_entry(ht, key, klen, val); #endif if(hep && *hep) { #ifdef HSH_CALLBACKS if((*hep)->val && (*hep)->val != val && ht->calls.f_freeval) (ht->calls.f_freeval)(ht->calls.arg, (void*)((*hep)->val)); #endif /* replace entry */ (*hep)->val = val; #ifdef HSH_TIMESTAMP /* Update or set the timestamp */ (*hep)->stamp = time(NULL); #endif /* check that the collision rate isn't too high */ if(ht->count > ht->max) { if(!expand_array(ht)) return 0; } return 1; } return 0; } #ifdef HSH_COPYKEYS void* hsh_rem(hsh_t* ht, const void* key) { hsh_entry_t** hep = find_entry(ht, key, NULL); #else void* hsh_rem(hsh_t* ht, const void* key, size_t klen) { hsh_entry_t** hep = find_entry(ht, key, klen, NULL); #endif void* val = NULL; if(hep && *hep) { hsh_entry_t* old = *hep; *hep = (*hep)->next; --ht->count; val = (void*)old->val; free(old); } return val; } unsigned int hsh_count(hsh_t* ht) { return ht->count; } #ifdef HSH_TIMESTAMP int hsh_purge(hsh_t* ht, time_t stamp) { hsh_index_t* hi; int r = 0; void* val; for(hi = hsh_first(ht); hi; hi = hsh_next(hi)) { if(hi->ths->stamp < stamp) { /* No need to check for errors as we're deleting */ #ifdef HSH_COPYKEYS val = hsh_rem(ht, KEY_DATA(hi->ths)); #else val = hsh_rem(ht, hi->ths->key, hi->ths->klen); #endif #ifdef HSH_CALLBACKS if(val && ht->calls.f_freeval) (ht->calls.f_freeval)(ht->calls.arg, val); #endif r++; } } return r; } #ifdef HSH_COPYKEYS void hsh_touch(hsh_t* ht, const void* key) { hsh_entry_t** hep = find_entry(ht, key, NULL); #else void hsh_touch(hsh_t* ht, const void* key, size_t* klen) { hsh_entry_t** hep = find_entry(ht, key, klen, NULL); #endif if(hep && *hep) ((*hep)->stamp) = time(NULL); } int hsh_bump(hsh_t* ht) { hsh_index_t* hi; void* key = NULL; void* val = NULL; time_t least = 0; #ifndef HSH_COPYKEYS size_t klen = 0; #endif for(hi = hsh_first(ht); hi; hi = hsh_next(hi)) { if(least == 0 || hi->ths->stamp < least) { least = hi->ths->stamp; key = KEY_DATA(hi->ths); #ifndef HSH_COPYKEYS klen = hi->this->klen; #endif } } if(key) { #ifdef HSH_COPYKEYS val = hsh_rem(ht, key); #else val = hsh_rem(ht, key, klen); #endif #ifdef HSH_CALLBACKS if(val && ht->calls.f_freeval) (ht->calls.f_freeval)(ht->calls.arg, (void*)val); #endif return 1; } return 0; } #endif /* HSH_TIMESTAMP */