

 I'm Stef Walter, work for Red Hat
 I'm passionate about open source, but more specifically
 making it usable, coherent, and polished
 Introducing you to cockpit today
 Why we built it
 What it is
 How it works

 Today we're going to talk about servers

Obligatory car analogy

 But first we've gotta have an analogy

 Actually this is not about cars it's about trucks

Building your own
truck^H^H^H^H^Hserver

 Deploying linux servers today is like building your own truck

 You can build powerful purpose built trucks

 Can built truck factories

 Can virtualize your servers

 Build servers that nobody else thinks are a good idea

 Build workhorse servers that can be overloaded

 Build fast low-latency servers

 Or you can build it completely wrong

But but, I just want
to drive it

 But not everyone knows how to build a truck, as we've all seen

 This is what it looks like to "drive" windows server

 This is what it looks like to "drive" linux servers

 Which looks like this to people who are not yet intimate with linux

Linux should be discoverable and
configurable by non-experts

 The learning curve is too steep

Cockpit is a discoverable face
for RHEL, Fedora and Linux Servers

 Cockpit is the server UI done right.
 Cockpit is a prototype stage. It's alpha software.

 This is what we're talking about

Look Ma!

 (proof of concept)

 We built a proof of concept, that should give you a basic idea.
 The design and look-feel here is a bit dated, from what we're
 currently working on, but I hope it gives you an idea.

In Fedora now

 # yum install --enablerepo=updates-testing cockpit
 # setenforce 0
 # systemctl enable cockpit-ws.socket
 # xdg-open http://localhost:21064

 Don't run this on a machine you care about (yet)

Architecture

 Discuss the architecture here

Goal: Discoverable

 So one of our main goals is to make Linux and it's various aspects
 discoverable.

 This is not discoverable

Goal: Plays well with others

 Allows management via other tools and reacts to them, for example
 the command line, Spacewalk, or puppet

 Video of add/remove user via command line

Goal: Lightweight low footprint

 Starts on demand, no overhead when not in use
 Headless, runs in a browser

Make it Stop!

 We want cockpit to stop when not in use

Make it Stop!
(when not in use)

 So stop your dbus configuration services when not in use
 Currently possible, although hard to get rid of all races exiting a dbus service
 But with kdbus this is totally supported. So long term we want this to be part of everything

Goal: Ad-hoc
No infrastructure prerequisite

 We don't force you to setup some other services or infrastructure before using cockpit

Goal: Use infrastructure well

 But if you have infrastructure like a domain, we want to use it properly.

Goal: Domain authentication

 Fallbacks for non-domain case will be present

Goal: Server roles

 For example if no domain is present we want to help the admin set one up
 with FreeIPA for example

Non-goal: Configuration management

 * Puppet/Salt and the like are excellent centralized configuration management tools
 * Notify admins when a system has them in use
 * Idealily avoid changing puppet-managed state
 * Help discover how to configure a puppet master

Goal: Opinionated when possible

 If there's a best practice, we want to help people discover it.
 There's a hundred ways to do it the other ways, cockpit doesn't have to do them all.

Non-goal: Yet another API
(hint: OpenLMI)

 Help make it better

Goal: Pluggable UI

 Not monolithic, will have a modular architecture and is extensible

Cockpit is open source

LGPL v2+
Code: github.com/cockpit-project

cockpit-devel@lists.fedorahosted.org

Questions?

http://cockpit-project.org
 #cockpit on Freenode

Credits:
Done in pinpoint

d10n2000 on Flickr, bigfez on Flickr, dalbera on Flickr
axeman3d on Flickr, toddmccann on Flickr

